Investigation of the influence of chirality on the transport properties requires the preparation of structurally different families of enantiopure conductors. Controlling the substituent bulkiness in the R-EDT-TTF donor leads, with the PF6 anion, to two different series of 2:1 enantiopure conducting salts with either metallic or activated conductivity.

Chiral EDT-TTF precursors with one stereogenic centre: substituent size modulation of the conducting properties in the (R-EDT-TTF)2PF6 (R = Me or Et) series
Nabil Mroweh, Pascale Auban-Senzier, Nicolas Vanthuyne, Enric Canadell, Narcís Avarvari
J. Mater. Chem C
7, 12664−12673, 2019
DOI: 10.1039/c9tc04243a

Figure: Depending on the R substituent in the (R-EDT-TTF) donor (center) two different conducting salts with 2:1 stoichiometry, [(R)-1]2PF6 (left) and  [(R)-2]2PF6 (right) can be prepared. The different donor layers lead to band formation with considerably different band width resulting with metals ([(R)-1]2PF6, left) or localized semiconductors ([(R)-2]2PF6, right).

Coordination
Anna May-Masnou This email address is being protected from spambots. You need JavaScript enabled to view it.
Redaction
Anna May-Masnou This email address is being protected from spambots. You need JavaScript enabled to view it.
Web & Graphic Editor
José Antonio Gómez  This email address is being protected from spambots. You need JavaScript enabled to view it.

Webmasters
José Antonio Gómez This email address is being protected from spambots. You need JavaScript enabled to view it.
Albert Moreno     This email address is being protected from spambots. You need JavaScript enabled to view it.
ICMAB