A topological Hall effect (THE) arises from the interaction of electrons with topological spin distributions, which are robust against fluctuations and noise. ICMAB researchers contributed by detecting THE from magneto-optic spectroscopy. The giant THE observed in (Ca,Ce)MnO3 is dependent on carrier concentration, which can be controlled by electric fields, opening new prospects for applications in electronics.

Giant topological Hall effect in correlated oxide thin films
Lorenzo Vistoli, Wenbo Wang, Anke Sander, Qiuxiang Zhu, Blai Casals, Rafael Cichelero, Agnès Barthélémy, Stéphane Fusil, Gervasi Herranz, Sergio Valencia, Radu Abrudan, Eugen Weschke, Kazuki Nakazawa, Hiroshi Kohno, Jacobo Santamaria, Weida Wu, Vincent Garcia, Manuel Bibes 
Nature Physics 15, 67–72, 2019
DOI: 10.1038/s41567-018-0307-5

Figure: Topological Hall effect (THE) in (Ca,Ce)MnO3. (a) Hall effect at different temperatures. The data are shifted vertically for clarity. (b) Decomposition of the Hall effect into anomalous Hall effect (AHE) and topological Hall effect (THE) using magneto-optical Kerr ellipticity at 15 K.

Coordination
Anna May-Masnou This email address is being protected from spambots. You need JavaScript enabled to view it.
Redaction
Anna May-Masnou This email address is being protected from spambots. You need JavaScript enabled to view it.
Web & Graphic Editor
José Antonio Gómez  This email address is being protected from spambots. You need JavaScript enabled to view it.

Webmasters
José Antonio Gómez This email address is being protected from spambots. You need JavaScript enabled to view it.
Albert Moreno     This email address is being protected from spambots. You need JavaScript enabled to view it.
ICMAB