SCIENTIFIC HIGHLIGHTS RL3, Articles

Magnetic properties of oxide thin films deposited by Polymer-Assisted-Deposition

High microstructural quality of La0.92MnO3 thin films grown by Polymer-Assisted-Deposition technique, suitable or spintronic applications

The growth of thin films by chemical methods has been a hot topic in the recent years as they offer appealing advantages over vacuum techniques as stoichiometric versatility and low-cost scalability. Among them, Polymer-Assisted-Deposition (PAD) is particularly attractive as it relies in environmentally friendly water-based solutions. However, serious concerns have been raised on the control of their interfacial quality limiting their use in emergent applications relaying in flat sharp interfaces, for example, for spintronics.

It is shown that La0.92MnO3 (LMO) thin films grown by PAD are of high microstructural quality with low magnetic damping, thus suitable for spintronic applications. Ferromagnetic resonance measurements in LMO/Pt bilayers gives clear indications of injection of pure spin currents into the Pt layer by spin pumping. This transfer of spin angular momentum through the interface between the ferromagnetic layer (LMO) and Pt layer is evidenced by an increase of magnetic damping. These results are of strong interest since they demonstrate that PAD technique allows obtaining complex oxide thin films of high microstructural quality suitable for spintronic applications.

We also present a deep study of the temperature dependence of the magnetodynamic properties of LMO thin films prepared by PAD showing that microstructural strain release from rhombohedral bulk phase results in an in-plane four-fold anisotropy with [110] as easy axis.

Our results demonstrate that LMO films grown by PAD may be used as efficient spin source systems in heterostructures for spintronic devices.

Dynamic magnetic properties and spin pumping in polymer-assisted-deposited La0.92MnO3 thin films
Hailin Wang, Alberto Pomar, Sergi Martín-Rio, Carlos Frontera, Narcis Mestres, Benjamín Martıínez
J. Mater. Chem. C 7, 12633-12640, 2019
DOI: 10.1039/C9TC04008K

Figure: Magnetic damping is enhanced in La0.92MnO3 thin films grown by Polymer-Assisted Deposition by spin pumping in a Pt capping layer. Inset: Ferromagnetic resonance spectra as a function of applied field for the two main in-plane orientations taken at 100K and 9GHz.

Coordination
Anna May-Masnou This email address is being protected from spambots. You need JavaScript enabled to view it.
Redaction
Anna May-Masnou This email address is being protected from spambots. You need JavaScript enabled to view it.
Web & Graphic Editor
José Antonio Gómez  This email address is being protected from spambots. You need JavaScript enabled to view it.

Webmasters
José Antonio Gómez This email address is being protected from spambots. You need JavaScript enabled to view it.
Albert Moreno     This email address is being protected from spambots. You need JavaScript enabled to view it.
ICMAB